95/12/29
11:55 عصر

مقاله A Hybrid Profiling Method to Detect Heterogeneous Credit C

بدست ali در دسته

 

برای دریافت پروژه اینجا کلیک کنید

مقاله A Hybrid Profiling Method to Detect Heterogeneous Credit Card Frauds دارای 8 صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله A Hybrid Profiling Method to Detect Heterogeneous Credit Card Frauds کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : در صورت  مشاهده  بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل ورد می باشد و در فایل اصلی مقاله A Hybrid Profiling Method to Detect Heterogeneous Credit Card Frauds،به هیچ وجه بهم ریختگی وجود ندارد


بخشی از متن مقاله A Hybrid Profiling Method to Detect Heterogeneous Credit Card Frauds :

سال انتشار: 1389

محل انتشار: هفتمین کنفرانس انجمن رمز ایران

تعداد صفحات: 8

چکیده:

The continued growth of online shopping, which is naturally followed by an increase in associated online frauds, exposes merchants to potentially huge financial losses. Hence many researches have been dedicated to detecting online payment frauds. Addressing the heterogeneous behavior of fraudsters which leads to different types of frauds has always been a challenge. In this paper, a hybrid profiling system based on anomaly detection technique for credit card fraud detection which combines transaction-level and aggregation-level profiles has been proposed. In the proposed approach due to an observed seasonal behavior of cardholders, a two-level clustering method is used to construct a transaction-level profile of each cardholder. This stage groups similar monthly behaviors of cardholders in the first level and clusters transactions of each group separately in the next level. To construct the aggregation-level profile, a method for transaction aggregation is applied as another strategy for fraud detection and the online and offline usage of aggregated data is considered in the proposed system. Results indicate that the parts of the system are complementary and combining them has compensated for their individual deficiencies, improved detection rate, resulted in a timelier fraud detection, and consequently more monetary saving. Furthermore, we demonstrate that the two-level clustering has reduced false alarms significantly

 

 

دانلود این فایل

 

برای دریافت پروژه اینجا کلیک کنید